0

$$\frac{2}{\sin{x}}\sum_{r=1}^{n-1} \sin{rx}\cos{[(n-r)y]} \equiv \frac{\cos{(nx)}-\cos{(ny)}}{\cos{x}-\cos{y}} - \frac{\sin{(nx)}}{\sin{x}}$$

The identity can be tediously proven using the Axiom of Induction.

I am looking for other means of proving this identity.

  • Use http://mathworld.wolfram.com/WernerFormulas.html and http://math.stackexchange.com/questions/17966/how-can-we-sum-up-sin-and-cos-series-when-the-angles-are-in-arithmetic-pro – lab bhattacharjee May 09 '16 at 11:32
  • I do not see how the summation you provided can be re-arranged into the identity above. – Jack Tiger Lam May 09 '16 at 11:53

1 Answers1

0

Hint: First use $2\sin(x)\cos(y)=\sin(x+y)+\sin(x-y)$, then apply $2i\sin(u)=e^{iu}-e^{-iu}$.

MrYouMath
  • 15,833