The central binomial $${2n\choose n}=\frac{(2n)!}{(n!)^2}$$
The series for natural logarithmic of $\ln(2)$ is
$$\ln(2)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}$$
and the integral for it is $$\int_0^1\frac{1}{1+x}dx=\ln(2)$$
Show that,
$$\sum_{n=1}^{\infty}\frac{\left(-\frac{1}{2}\right)^{n-1}}{{n^2}{2n\choose n}}=\ln^2(2)$$
Can anybody help me to prove this sum, I found it through mathematical experimental.
I guess if there is an integral for, $\frac{1}{n^2{2n\choose n}}=\int_0^1f(x,n)dx$ it might be helpful.
I know that $\frac{2^n}{(2n+1){2n\choose n}}=\int_0^1[2x(1-x)]^ndx$