For our purpose,let $a,b,c$ and $x\gt2$ be natural numbers such that the positive integers $a,b$ and $c$ form a special pythagorean triple $(a,b,c)$,then it is conjectured that the following is true
$$G(x)=\cfrac{2}{3x+\cfrac{(-1)(7)} {9x+\cfrac{(2)(10)}{15x+\cfrac{(5)(13)}{21x+\cfrac{(8)(16)}{27x+\ddots}}}}}$$
$$G(x)=\frac{a}{2b}+\frac{c}{b}\left[ {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{c+a}{2c}\right) - {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{c-a}{2c}\right) \right]$$
where,
$$a=4x(x^2-1)\\b = x^4-6x^2+1\\c=(x^2+1)^2$$
such that,
$$a^2+b^2=c^2=(x^2+1)^4$$
Corollaries
Here are some of its closed forms with their related not necessarily primitive pythagorean triples next to them
$$G(3)=\frac{12}{7}+\frac{25}{7}\left[ {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{49}{50}\right) - {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{1}{50}\right) \right] ; (7,24,25)$$
$$G(4)=\frac{120}{161}+\frac{289}{161}\left[ {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{529}{578}\right) - {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{49}{578}\right) \right] ;(161,240,289)$$
$$G(5)=\frac{60}{119}+\frac{169}{119}\left[ {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{289}{338}\right) - {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{49}{289}\right) \right] ;(119,120,169)$$
$$G(6)=\frac{420}{1081}+\frac{1369}{1081}\left[ {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{2209}{2738}\right) - {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{529}{2738}\right) \right] ;(840,1081,1369)$$
$$G(7)=\frac{168}{527}+\frac{625}{527}\left[ {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{961}{1250}\right) - {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{289}{1250}\right) \right] ;(336,527,625)$$
$$G(8)=\frac{1008}{3713}+\frac{4225}{3713}\left[ {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{6241}{8450}\right) - {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{2209}{8450}\right) \right] ;(2016,3713,4225)$$
$$G(9)=\frac{360}{1519}+\frac{1681}{1519}\left[ {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{2401}{3362}\right) - {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{961}{3362}\right) \right] ;(720,1519,1681)$$
$$G(10)=\frac{1980}{9401}+\frac{10201}{9401}\left[ {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{14161}{20402}\right) - {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{6241}{20402}\right) \right] ;(3960,9401,10201)$$
$$G(11)=\frac{660}{3479}+\frac{3721}{3479}\left[ {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{5041}{7442}\right) - {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{2401}{7442}\right) \right] ;(1320,3479,3721)$$
$$G(12)=\frac{3432}{19873}+\frac{21025}{19873}\left[ {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{27889}{42050}\right) - {}_2F_1\left( -\frac13, \frac13 ; \frac12; \frac{14161}{42050}\right) \right] ;(6864,19873,21025)$$
and so on for all values of $x\gt2$...
Question :Can the conjecture be rigorously proved,so that the connection between the continued fraction and the primitive pythagorean triples can be established?
= \cos\frac{\theta+\pi}{3} $$ Not sure whether this helps.
– achille hui May 09 '16 at 04:19