Let me do this (a bit non-rigorously) without derivatives.
Let $S=\frac12+\frac24+\frac38+\dots+\frac{r}{2^r}+\cdots$
Then
$$\begin{align}
S&=\frac12+\frac24+\frac38+\frac4{16}+\cdots
\\&=\frac12+\frac12\left(\frac22+\frac34+\frac48+\cdots\right)
\\&=\frac12+\frac12\left(\left(\frac12+\frac12\right)+\left(\frac24+\frac14\right)+\left(\frac38+\frac18\right)+\cdots\right)
\\&=\frac12+\frac12\left(\left(\frac12+\frac24+\frac38+\cdots\right)+\left(\frac12+\frac14+\frac18+\cdots\right)\right)
\\&=\frac12+\frac12(S+1)
\end{align}$$
Solving gives $S=2$.