Possible Duplicate:
For every irrational $\alpha$, the set $\{a+b\alpha: a,b\in \mathbb{Z}\}$ is dense in $\mathbb R$
I want to show that
Given any irrational number $\alpha\in \mathbb{R}$, the set $\displaystyle S=\{ m+n\alpha : m,n\in Z \}$ is dense in $\mathbb{R}$.
Thanks in advance!