We present an approach here that relies only on a standard inequality and the squeeze theorem. To that end, we proceed.
First, note that we can write the limit of interest as
$$\lim_{n\to \infty}\left(\frac{(n+1)^{\sqrt{n+1}}}{n^\sqrt{n}}\right)=\lim_{n\to \infty}e^{\sqrt{n+1}\log(n+1)-\sqrt{n}\log(n)} \tag 1$$
Next, we analyze the exponent on the right-hand side of $(1)$.
Using the identity $\log(n+1)=\log(n)+\log\left(1+\frac1n\right)$, the exponent becomes
$$\begin{align}
\sqrt{n+1}\log(n+1)-\sqrt{n}\log(n)&=\left(\sqrt{n+1}-\sqrt{n}\right)\log(n)+\sqrt{n+1}\log\left(1+\frac1n\right)\\\\
&=\frac{\log(n)}{\sqrt{n+1}+\sqrt{n}}+\sqrt{n+1}\log\left(1+\frac1n\right) \tag 2\\\\
\end{align}$$
Then, since for any $\alpha>0$, $\log(n)\le \frac{n^\alpha}{\alpha}$, we find that the term of interest satisfies the inequalities
$$0\le\frac{\log(n)}{\sqrt{n+1}+\sqrt{n}}+\sqrt{n+1}\log\left(1+\frac1n\right)\le \frac2{n^{1/4}}+\frac2{\sqrt{n}} \tag 3$$
Applying the squeeze theorem to $(3)$ yields
$$\lim_{n\to \infty} \left(\sqrt{n+1}\log(n+1)-\sqrt{n}\log(n)\right)=0 \tag 4$$
whence using $(4)$ in $(1)$, we find the coveted limit
$$\bbox[5px,border:2px solid #C0A000]{\lim_{n\to \infty}\frac{(n+1)^{\sqrt{n+1}}}{n^\sqrt{n}}=1}$$
NOTES:
Note $1$
In this note, we show that the logarithm function satisfies the inequality $\log(n)\le \frac{n^\alpha}{\alpha}$ for any $\alpha >0$. In THIS ANSWER, I showed using only the limit definition of the exponential function along with Bernoulli's Inequality that the logarithm function satisfies the inequalities
$$\frac{x-1}{x}\le\log(x)\le x-1<x \tag{N1}$$
for $x>0$. Then, using $\log(n^\alpha)=\alpha \log(n)$ in $(N1)$ with $x=n^\alpha$, we find
$$\log(n)\le \frac{n^\alpha -1}{\alpha}<\frac{n^\alpha}{\alpha} \tag {N2}$$
Note $2$
In this note, we show that $0\le \frac{\log(n)}{\sqrt{n+1}+\sqrt{n}}\le \frac{2}{n^{1/4}}$ for $n\ge 1$. The left-hand side inequality is trivial. For the right-hand side inequality we use $(N2)$ with $\alpha =1/4$.
Then, we see that $\log(n)\le 4n^{1/4}$. Putting that result together with the inequality $\frac{1}{\sqrt{n+1}+\sqrt{n}}\le \frac{1}{2\sqrt{n}}$, we obtain
$$0\le \frac{\log(n)}{\sqrt{n+1}+\sqrt{n}}\le \frac{2}{n^{1/4}}$$
as was to be shown.
Note $3$
In this note, we show $0\le \sqrt{n+1}\log\left(1+\frac1n\right)\le \frac2{\sqrt{n}}$, for $n\ge 1$. The left-hand side inequality is trivial. For the right-hand side inequality we use $(N1)$ with $x=1+\frac1n$.
Then, we see that $\log\left(1+\frac1n\right)\le \frac1n$. Putting that result together with $\sqrt{n+1}\le 2\sqrt{n}$, we obtain
$$0\le \sqrt{n+1}\log\left(1+\frac1n\right)\le \frac2{\sqrt{n}}$$
as was to be shown.