-3

I have to find $$I(\alpha)=\int_{0}^{1}\frac{\arctan(\alpha x)}{x\sqrt{1-x^2}}dx$$ Can someone help me to solve it?

Jack D'Aurizio
  • 353,855
Tuanlee
  • 137

1 Answers1

2

$$I'(\alpha) = \int_{0}^{1}\frac{dx}{(1+\alpha^2 x^2)\sqrt{1-x^2}} = \int_{0}^{\pi/2}\frac{d\theta}{1+\alpha^2\sin^2\theta}=\frac{\pi}{2\sqrt{1+\alpha^2}} $$ by the tangent half-angle substitution. By integrating with respect to $\alpha$:

$$ I(\alpha)=\int_{0}^{1}\frac{\arctan(\alpha x)}{x\sqrt{1-x^2}}\,dx = \color{red}{\frac{\pi}{2}\text{arcsinh}(\alpha)}.$$

Jack D'Aurizio
  • 353,855