Solve $$I=\int_{0}^{\infty}\frac{\ln^2x}{1+x^4}dx$$
Using function Euler. Help me please..
Solve $$I=\int_{0}^{\infty}\frac{\ln^2x}{1+x^4}dx$$
Using function Euler. Help me please..
You can use contour integration here: \begin{align*} \int_0^{\infty} \frac{\ln(x)^2 + (\ln(x) + \pi i)^2}{1+x^4} \, \mathrm{d}x &= \int_{-\infty}^{\infty} \frac{\log(z)^2}{1+z^4} \, \mathrm{d}z \\ &= 2\pi i \mathrm{Res} \Big( \frac{\log(z)^2}{1+z^4}; z=\sqrt{i} \Big) + 2\pi i \mathrm{Res} \Big( \frac{\log(z)^2}{1+z^4}; z= \sqrt{i}^3 \Big) \\ &=2 \pi i \Big( -\frac{\log(\sqrt{i})^2 \sqrt{i}}{4} - \frac{\log(\sqrt{i}^3)^2 \sqrt{i}^3}{4}\Big) \\ &= 2\pi i \Big(\frac{(\pi i / 4)^2 (-1-i)}{4 \sqrt{2}} + \frac{(3\pi i / 4)^2 (1 - i)}{4 \sqrt{2}}\Big) \\ &= -\frac{\pi^3}{4\sqrt{2}}i - \frac{5 \pi^3}{16 \sqrt{2}}, \end{align*} so $$2 \int_0^{\infty}\frac{\ln(x)^2}{1+x^4} \, \mathrm{d}x + 2\pi i \int_0^{\infty} \frac{\ln(x)}{1+x^4} - \pi^2 \int_0^{\infty} \frac{1}{1+x^4} \, \mathrm{d}x = -\frac{\pi^3}{4\sqrt{2}}i - \frac{5 \pi^3}{16 \sqrt{2}}.$$ Taking real parts, $$\int_0^{\infty} \frac{\ln(x)^2}{1+x^4} = \frac{\pi^2}{2} \int_0^{\infty} \frac{1}{1+x^4} \, \mathrm{d}x - \frac{5\pi^3}{32 \sqrt{2}}$$ Another contour integral will calculate $\int_0^{\infty} \frac{1}{1+x^4} \, \mathrm{d}x = \frac{\pi}{2 \sqrt{2}}$, so $$\int_0^{\infty} \frac{\ln(x)^2}{1+x^4} \, \mathrm{d}x = \frac{\pi^3}{4 \sqrt{2}} - \frac{5\pi^3}{32 \sqrt{2}} = \frac{3 \pi^3}{32 \sqrt{2}}.$$