I believe the $\lim_{n \to \infty} \frac{(3n)!(1/27)^n}{(n!)^3}$ -> 0.
But I am not sure if my reasoning is correct.
Because there is a higher power in the denomination that the numerator, the limit goes to 0?
I believe the $\lim_{n \to \infty} \frac{(3n)!(1/27)^n}{(n!)^3}$ -> 0.
But I am not sure if my reasoning is correct.
Because there is a higher power in the denomination that the numerator, the limit goes to 0?
Use Stirling's approximation $$ n!\sim \sqrt{2\pi n} (n/e)^n $$ for large $n$ to write $$ \frac{(3n)!(1/27)^n}{(n!)^3}\sim\frac{\sqrt{2\pi 3 n} (3n/e)^{3n} (1/27)^n }{(\sqrt{2\pi n} (n/e)^n)^3 }=\frac{\sqrt{3}}{2n\pi}\to 0 $$ for large $n$.
$$\lim_{n\to \infty} \frac{(3n)! (1/27)^n}{(n!)^3} = \lim_{n\to \infty} \frac{(3n)!}{(3^n n!)^3}$$ Let's solve it with a ram. It's obvious that $1 < (3n)! < 3^{3n} * n^n $ and $n^n < n! n!$ so we can use the Squeeze theorem: $$\lim_{n\to \infty} \frac{1}{(3^n n!)^3} = 0; \lim_{n\to \infty} \frac{3^{3n} * n^n}{(3^{n} n!)^3} = \lim_{n\to \infty} \frac{n^n}{(n!)^3} = 0 $$