Let $ A = \left( {\begin{array}{*{20}{c}} {x + (\frac{3}{4} + y)i}&1&1\\ 0&{(x - \frac{5}{4}) + iy}&1\\ 0&0&{(x + \frac{3}{4}) + iy} \end{array}} \right)$, and $x,y\in \mathbb{R}$.
What are singular value of $A$?(In terms of $x,y$)
Let $ A = \left( {\begin{array}{*{20}{c}} {x + (\frac{3}{4} + y)i}&1&1\\ 0&{(x - \frac{5}{4}) + iy}&1\\ 0&0&{(x + \frac{3}{4}) + iy} \end{array}} \right)$, and $x,y\in \mathbb{R}$.
What are singular value of $A$?(In terms of $x,y$)
Since the matrix is upper triangular, the determinant is just the product of the diagonal elements. Hence
$$D = \left[x + i\left(\frac{3}{4} + y \right)\right] \cdot \left [\left(x- \frac{5}{4} \right) + iy \right ] \cdot \left[ \left(x + \frac{3}{4} \right) + iy \right]$$
Setting $D$ to zero and computing the values of $x$ and $y$ will give you the zeroes.