How can I show $\dfrac{19}{7}<e$ without using a calculator and without knowing any digits of $e$?
Using a calculator, it is easy to see that $\frac{19}{7}=2.7142857...$ and $e=2.71828...$
However, how could this be shown in a testing environment where one does not have access to a calculator?
My only thought is to use the Taylor series for $e^x$ with $x=1$ to calculate $\displaystyle e\approx\sum \limits_{n=0}^{7}\frac{1}{n!}=\frac{685}{252}=2.7182...$
However, this method seems very time consuming and tedious, finding common denominators and performing long division. Does there exist a quicker, more elegant way?