Suppose we seek to verify that
$$\sum_{p=0}^l\sum_{q=0}^p (-1)^q
{m-p\choose m-l} {n\choose q} {m-n\choose p-q}
= 2^l {m-n\choose l}$$
where $m\ge n$ and $m-n\ge l.$
This is
$$\sum_{p=0}^l {m-p\choose m-l} \sum_{q=0}^p (-1)^q
{n\choose q} {m-n\choose p-q}.$$
Now introduce the integral
$${m-n\choose p-q} =
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{p-q+1}} (1+z)^{m-n} \; dz.$$
Note that this vanishes when $q\gt p$ so we may extend the range of
$q$ to infinity, getting for the sum
$$\sum_{p=0}^l {m-p\choose m-l}
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{p+1}} (1+z)^{m-n}
\sum_{q\ge 0} (-1)^q
{n\choose q} z^q
\; dz
\\ = \sum_{p=0}^l {m-p\choose l-p}
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{p+1}} (1+z)^{m-n}
(1-z)^n
\; dz.$$
Introduce furthermore
$${m-p\choose l-p} =
\frac{1}{2\pi i}
\int_{|w|=\gamma}
\frac{1}{w^{l-p+1}} (1+w)^{m-p} \; dw.$$
This too vanishes when $p\gt l$ so we may extend $p$ to infinity, getting
$$\frac{1}{2\pi i}
\int_{|w|=\gamma}
\frac{1}{w^{l+1}} (1+w)^{m}
\\ \times \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z} (1+z)^{m-n}
(1-z)^n
\sum_{p\ge 0} \frac{w^p}{z^p} \frac{1}{(1+w)^p}
\; dz
\; dw.$$
The geometric series converges when $|w/z/(1+w)|\lt 1.$ We get
$$\frac{1}{2\pi i}
\int_{|w|=\gamma}
\frac{1}{w^{l+1}} (1+w)^{m}
\\ \times \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z} (1+z)^{m-n}
(1-z)^n
\frac{1}{1-w/z/(1+w)}
\; dz
\; dw
\\ = \frac{1}{2\pi i}
\int_{|w|=\gamma}
\frac{1}{w^{l+1}} (1+w)^{m}
\\ \times \frac{1}{2\pi i}
\int_{|z|=\epsilon}
(1+z)^{m-n}
(1-z)^n
\frac{1}{z-w/(1+w)}
\; dz
\; dw.$$
Now from the convergence we have $|w/(1+w)|<|z|$ which means the pole
at $z=w/(1+w)$ is inside the contour $|z|=\epsilon.$ Extracting the
residue yields (the pole at zero has disappeared)
$$\frac{1}{2\pi i}
\int_{|w|=\gamma}
\frac{1}{w^{l+1}} (1+w)^{m}
\left(1+\frac{w}{1+w}\right)^{m-n}
\left(1-\frac{w}{1+w}\right)^n
\; dw
\\ = \frac{1}{2\pi i}
\int_{|w|=\gamma}
\frac{1}{w^{l+1}}
(1+2w)^{m-n}
\; dw
\\ = 2^l {m-n\choose l}.$$