Prove that the sum of the squares of two odd integers cannot be the square of an integer.
My method:
Assume to the contrary that the sum of the squares of two odd integers can be the square of an integer. Suppose that $x, y, z \in \mathbb{Z}$ such that $x^2 + y^2 = z^2$, and $x$ and $y$ are odd. Let $x = 2m + 1$ and $y = 2n + 1$. Hence, $x^2 + y^2$ = $(2m + 1)^2 + (2n + 1)^2$ $$= 4m^2 + 4m + 1 + 4n^2 + 4n + 1$$ $$= 4(m^2 + n^2) + 4(m + n) + 2$$ $$= 2[2(m^2 + n^2) + 2(m + n) + 1]$$ Since $2(m^2 + n^2) + 2(m + n) + 1$ is odd it shows that the sum of the squares of two odd integers cannot be the square of an integer.
This is what I have so far but I think it needs some work.