From Brahmagupta-Fibonacci Identity:
$${\left( {p}_{2}\,{s}_{2}+{p}_{1}\,{s}_{1}\right) }^{2}+{\left( {p}_{1}\,{s}_{2}-{s}_{1}\,{p}_{2}\right) }^{2}=\left( {p}_{2}^{2}+{p}_{1}^{2}\right) \,\left( {s}_{2}^{2}+{s}_{1}^{2}\right)$$
get:
$${\left( {p}_{2}\,{s}_{2}\,{t}_{2}+{p}_{1}\,{s}_{1}\,{t}_{2}+{p}_{1}\,{t}_{1}\,{s}_{2}-{s}_{1}\,{t}_{1}\,{p}_{2}\right) }^{2}+{\left( {p}_{1}\,{s}_{2}\,{t}_{2}-{s}_{1}\,{p}_{2}\,{t}_{2}-{t}_{1}\,{p}_{2}\,{s}_{2}-{p}_{1}\,{s}_{1}\,{t}_{1}\right) }^{2}=\left( {p}_{2}^{2}+{p}_{1}^{2}\right) \,\left( {s}_{2}^{2}+{s}_{1}^{2}\right) \,\left( {t}_{2}^{2}+{t}_{1}^{2}\right)$$
and get solution:
$${\left( {p}_{2}\,{t}_{2}^{2}+2\,{p}_{1}\,{t}_{1}\,{t}_{2}-{t}_{1}^{2}\,{p}_{2}\right) }^{2}+{\left( {p}_{1}\,{t}_{2}^{2}-2\,{t}_{1}\,{p}_{2}\,{t}_{2}-{p}_{1}\,{t}_{1}^{2}\right) }^{2}=\left( {p}_{2}^{2}+{p}_{1}^{2}\right) \,{\left( {t}_{2}^{2}+{t}_{1}^{2}\right) }^{2}$$