How to figure out that $\lim_{x \rightarrow 0^+} \frac{\ln x}{x^n} \rightarrow -\infty$ and not $\infty$, because according to L'Hopitals:
$$\lim_{x \rightarrow 0^+} \frac{\ln x}{x^n} = \lim_{x \rightarrow 0^+} \frac{1/x}{nx^{n-1}}=\lim_{x \rightarrow 0^+} \frac{1}{nx^{n}} \rightarrow \infty$$