$$\sqrt{x+938^2} - 938 + \sqrt{x + 140^2} - 140 = 38$$
My attempt
$\sqrt{x+938^2} + \sqrt{x + 140^2} = 1116$
$(\sqrt{x+938^2} + \sqrt{x + 140^2})^2 = (1116)^2$
$x+938^2 + 2*\sqrt{x+938^2}*\sqrt{x + 140^2} + x + 140^2 = 1116^2$
$2x + 2*\sqrt{x+938^2}*\sqrt{x + 140^2} = 1116^2 - 938^2 - 140^2$
$x + \sqrt{x^2 + 2(938^2 + 140^2)x+(938*140)^2} = 1116^2 - 938^2 - 140^2$
At this point trying to solve for x inside the sqrt in the quadratic gives me an imaginary number. How is it possible to solve this?