One obtains an Abel differential equation of second kind for $x$ as function of $y$,
which can be brought into the normal form (changing variables)
$$
z\frac{dz}{du}-z=f(u),
$$
following standard procedures. In
https://arxiv.org/ftp/arxiv/papers/1503/1503.05929.pdf it is claimed to have solved analitically that normal form (I don't understand fully the article), which would give an exact solution
to the initial problem.
Clearly the equations yield
$$
Axy+By-B=\frac{dx}{dy}(Cxy+Dy-D)
$$
We make the following change of variables:
$$
z=x+\frac DC-\frac{D}{Cy},
$$
so
$$
x=z-\frac DC+\frac{D}{Cy}\quad\text{and}\quad \frac{dx}{dy}=\frac{dz}{dy}-\frac{D}{Cy^2}.
$$
So the equation reads
$$
Ay\left(z-\frac DC+\frac{D}{Cy}\right)+By-B=\left(\frac{dz}{dy}-\frac{D}{Cy^2}\right)\left(Cy\left(z-\frac DC+\frac{D}{Cy}\right)+Dy-D\right),
$$
and simplifying we obtain
$$
Ayz+\frac{\Delta}{C}(y-1)=\frac{dz}{dy}Cyz-\frac{Dz}{y},\quad\text{where $\Delta=BC-AD$}
$$
which yields
$$
z\frac{dz}{dy}=\left(\frac AC+\frac{D}{Cy^2}\right)z+\frac{\Delta}{C^2}\left(1-\frac 1y\right).
$$
Now we change again the variables, setting $u=\frac AC y-\frac{D}{Cy}$. Then
$$
\frac{dz}{dy}=\frac{dz}{du}\left(\frac AC+\frac{D}{Cy^2}\right)\quad\text{and}\quad y=\frac{Cu\pm \sqrt{4AD+C^2u^2}}{2A}.
$$
Inserting these values into the equation gives us
$$
\left(\frac AC+\frac{D}{Cy^2}\right)z\frac{dz}{du}=z\frac{dz}{dy}=\left(\frac AC+\frac{D}{Cy^2}\right)z+\frac{\Delta}{C^2}\left(1-\frac 1y\right).
$$
Since
$$
\frac{\frac{\Delta}{C^2}\left(1-\frac 1y\right)}{\frac AC+\frac{D}{Cy^2}}=\frac{\Delta}{C}\frac{y(y-1)}{Ay^2+D},
$$
we obtain, as announced above,
$$
z\frac{dz}{du}=z+f(u),
$$
where
$$
f(u)=\frac{\Delta}{C}\frac{y(y-1)}{Ay^2+D}=\frac{\Delta R(R-2A)}{2AC(4AD+CuR)},\quad\text{with $R=Cu\pm \sqrt{4AD+C^2u^2}$}.
$$