Suppose $u,v \in \mathbb{C}$ are in the open unit disk. Is $||u|^n - |v|^n| \leq |u - v|^n$?
I want to use this property as an intermediate step for something else but I'm having trouble proving it. Intuition tells me it should be true. If $n=1$, it is simply the triangle inequality. What about for $n > 1$?