How is
$$ \int {f(x)}^{g(x)} dx $$
neatly expressed in terms of:
$$ \int f(x) dx {,\,} \int g(x) dx ? $$
How is
$$ \int {f(x)}^{g(x)} dx $$
neatly expressed in terms of:
$$ \int f(x) dx {,\,} \int g(x) dx ? $$
There is no neat expression. Compare $$ \int (1-x^2) \;dx = x-\frac{x^3}{3}+C \\ \int \left(-\frac{1}{2}\right)dx = -\frac{x}{2}+C $$ with $$ \int (1-x^2)^{-1/2}\;dx = \arcsin x +C $$