Can someone please explain this limit:
$$lim_{j\rightarrow\infty} \frac{j^{j}}{(j+1)^{j}}=\frac{1}{e}?$$
I got it from this series:
$$\sum_1^{\infty}\frac{j!}{j^j}.$$
Can someone please explain this limit:
$$lim_{j\rightarrow\infty} \frac{j^{j}}{(j+1)^{j}}=\frac{1}{e}?$$
I got it from this series:
$$\sum_1^{\infty}\frac{j!}{j^j}.$$
The reciprocal is $\left(1+\frac1j\right)^j$, which is one of the definitions of $e$.
$$L=\lim_{j\rightarrow\infty} \frac{j^{j}}{(j+1)^{j}}=\lim_{j\rightarrow\infty} \frac{1}{(1+\frac1j)^{j}}$$
The limit is of the form $1^{\infty}$.
Thus, $$L=e^{\lim_{j\rightarrow\infty}\left(\frac{1}{1+\frac1j}-1\right)j}=e^{-1}$$