0

Can someone please explain this limit:

$$lim_{j\rightarrow\infty} \frac{j^{j}}{(j+1)^{j}}=\frac{1}{e}?$$

I got it from this series:

$$\sum_1^{\infty}\frac{j!}{j^j}.$$

2 Answers2

2

The reciprocal is $\left(1+\frac1j\right)^j$, which is one of the definitions of $e$.

Empy2
  • 50,853
0

$$L=\lim_{j\rightarrow\infty} \frac{j^{j}}{(j+1)^{j}}=\lim_{j\rightarrow\infty} \frac{1}{(1+\frac1j)^{j}}$$

The limit is of the form $1^{\infty}$.

Thus, $$L=e^{\lim_{j\rightarrow\infty}\left(\frac{1}{1+\frac1j}-1\right)j}=e^{-1}$$

GoodDeeds
  • 11,185
  • 3
  • 22
  • 42