-2

Why \begin{equation} \lim_{x\to-\infty}\sqrt{x^2-x-1}-x=+\infty, \end{equation} Thanks

1 Answers1

1

It is enough to notice that $\sqrt{t} > 0$ for all $t$. So $\sqrt{x^2-x-1} > 0$ and hence $\sqrt{x^2-x-1} -x > -x$, and the latter goes to infinity if $x$ goes to $-\infty$.

wythagoras
  • 25,026