$||$
Suppose for non-negative $a,b,c$,
$$
L(2a,2b,2c)=
\left ( \frac\pi2 \right )^{a+b+c-1} \int_{0}^{\infty}\frac{
\vartheta_2(e^{-\pi x})^{2a}\vartheta_3(e^{-\pi x})^{2b}\vartheta_4(e^{-\pi x})^{2c}}{
1+x^2}\text{d}x.\tag{1}
$$
By making a modular parameterization $x=K^\prime(k)/K(k)$, and noticing that
$$
\vartheta_2^2=\frac{2kK}{\pi},
\vartheta_3^2=\frac{2K}{\pi},
\vartheta_4^2=\frac{2k^\prime K}{\pi},
\frac{\mathrm{d}x}{\mathrm{d}k}
=-\frac{\pi}{2kk^\prime{}^2K^2},
$$we have
$$
L(2a,2b,2c)=\int_{0}^{1} \frac{k^{a-1}k^\prime{}^{c-2}
K^{a+b+c}}{K^2+K^\prime{}^2}\text{d}k.\tag{2}
$$
To evaluate $(2)$, I introduce a variation of Hrilbert transformation.
For two integrable functions $f_{1}(x),f_2(x)$ for $x\in[0,1]$, define
$$
\frac{2}{\pi}\int_{0}^{1} \frac{f_{1,2}(x)}{1-k^2x^2}\text{d}x
=g_{1,2}(k),
$$
obviously we have
$$
\int_{0}^{1} f_1(x)g_2(x)\text{d}x
=\int_{0}^{1}f_2(x)g_1(x)\text{d}x.\tag{3}
$$
What's special of the transformation is that for certain functions(containing $K$), they act invariants alike.
Some transform pairs can be computed explicitly by residues, e.g.
$$\begin{array}{|l|l|}\hline
f(x)&g(k)\\ \hline
1&\frac{1}{\pi k}\ln\left ( \frac{1+k}{1-k} \right )\\
K^\prime(x)&K(k)\\
xK(x)K^\prime(x)& \frac{1}{2} K(k)^2\\
3K(x)^2K^\prime(x)-K^\prime(x)^3&k^2K(k)^3\\
x^2\left(3K(x)^2K^\prime(x)-K^\prime(x)^3\right)&K(k)^3\\
\frac{1}{\sqrt{1-x^2}}&\frac{1}{\sqrt{1-k^2}}\\
\frac{xK(x)}{\sqrt{1-x^2}}&\frac{K(k)}{\sqrt{1-k^2}}\\
x\sqrt{1-x^2}\left(3K(x)K^\prime(x)^2-K(x)^3\right)&\sqrt{1-k^2}K(k)^3\\
\sqrt{1-x^2}\left(K(x)^4-6K(x)^2K^\prime(x)^2+K^\prime(x)^4\right)&
-k^2\sqrt{1-k^2}K(k)^4\\
x^2\sqrt{1-x^2}\left(K(x)^4-6K(x)^2K^\prime(x)^2+K^\prime(x)^4\right)&
-\sqrt{1-k^2}K(k)^4\\
\frac{1}{x\sqrt{1-x^2} }\frac{K(x)}{
K(x)^2+K^\prime(x)^2}&\frac{1}{K(k)\sqrt{1-k^2} }\\
\frac{x}{\sqrt{1-x^2} }\frac{K(x)}{
K(x)^2+K^\prime(x)^2}&\frac{1}{k^2}\left(\frac{1}{K(k)\sqrt{1-k^2} }-\frac2\pi\right)\\
\frac{x^{2a-1}}{(1-x^2)^a}&\frac{1}{\sin(\pi a)}\frac1{(1-k^2)^a}\\
\hline
\end{array}$$
Example Evaluation
Proposition: Show that
$$
L(4,0,4)=\left ( \frac{\pi}{2} \right )^3
\int_{0}^{\infty} \frac{\vartheta_2^4(e^{-\pi x})
\vartheta_4^4(e^{-\pi x})}{1+x^2}\text{d}x
=\zeta(3),
$$
$$
L(0,4,4)=\left ( \frac{\pi}{2} \right )^3
\int_{0}^{\infty} \frac{\vartheta_3^4(e^{-\pi x})
\vartheta_4^4(e^{-\pi x})}{1+x^2}\text{d}x
=\frac72\zeta(3).
$$
Proof: On the one hand, from $(2)$, we have
$$
L(0,4,4)=\int_{0}^{1}\frac{K(k)^4}{k(K(k)^2+K^\prime(k)^2)}
\text{d}k.
$$
Setting $f_1=\frac{1}{x\sqrt{1-x^2} }\frac{K(x)}{
K(x)^2+K^\prime(x)^2},f_2=x\sqrt{1-x^2}\left(3K(x)K^\prime(x)^2-K(x)^3\right)$, using $(3)$ we have
$$
L(0,4,4)=\int_{0}^{1}x\left(3K^\prime(x)^2-K(x)^2\right) \text{d}x=\frac72\zeta(3).
$$
The last equality is well-known.
On the other hand, due to Jacobi's functional relation
$$
\vartheta_2^4+\vartheta_4^4=\vartheta_3^4,
$$
we have
$$
L(4,0,4)+L(0,0,8)=L(0,4,4).
$$
$L(0,0,8)=\frac{5}{2}\zeta(3)$ can be found in the original post, and it then completes the proof.
Expressions obtained by this method:
$$
\begin{array}{l}
L(0,0,2)=1\\
L(0,2,2)=2G\\
L(0,2,4)=\frac{7}{2}\zeta(3)-2G\\
L(0,4,2)=4G\\
L(4,2,2)=\frac{3\pi^4}{16}
{}_7F_6\left ( \begin{array}{c|}
\frac12,\frac12,\frac12,\frac12,\frac12,\frac12,\frac54\\
\frac14,1,1,1,1,1
\end{array}\text{ }1 \right )-\int_{0}^{1} \frac{K^\prime{}^3}{K}
\frac{\text{d}k}{k^\prime}\\
L(4,2,4)=\frac{27\text{ }\Gamma\left ( \frac14 \right )^8 }{1280\pi^2}
-\int_{0}^{1} \frac{K^\prime{}^4}{K}\text{d}k\\
L(4,4,2)=\frac{\text{}\Gamma\left ( \frac14 \right )^8 }{160\pi^2}\\
L(0,8,4)=-\int_{0}^{1}k^3\left ( 5K^\prime{}^4-10K^2K^\prime{}^2
+K^4 \right )\text{d}k
\end{array}
$$
where here and below $G$ denotes Catalan's constant $G=\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2}$.
And then:
$$
\begin{array}{l}
L(0,0,4)=2\ln(2)\\
L(0,0,6)=4G-\frac{\pi^2}{6}\\
L(4,0,2)=\frac{\pi^2}{6}\\
L(0,0,10)=\frac{48}{5}\beta(4)+\frac{2\pi^4}{75}
-\frac{\Gamma\left ( \frac14 \right )^8 }{400\pi^2}\\
L(0,8,4)=\frac{93}{8}\zeta(5)+\frac{\pi^6}{256}
{}_9F_8\left ( \frac12,\frac12 ,\frac12,\frac12,
\frac12,\frac12,\frac12,\frac12,\frac54;
\frac14,1,1,1,1,1,1,1;1\right ).
\end{array}
$$
And we also follow OP's $q$-expansion method, to obtain more results. Along with some L-series like $$L_8(s)=\sum_{n=0}^{\infty}\left ( \frac{1}{(8n+1)^s}
- \frac{1}{(8n+3)^s}- \frac{1}{(8n+5)^s}+ \frac{1}{(8n+7)^s}\right ),$$$$L_{-8}(s)=\sum_{n=0}^{\infty}\left ( \frac{1}{(8n+1)^s}+ \frac{1}{(8n+3)^s}- \frac{1}{(8n+5)^s}-\frac{1}{(8n+7)^s}\right ),$$ here is the summary:
$$
\begin{array}{|l}
\color{red}{L(0,0,1)}
=\sqrt{\frac\pi2}+2\sqrt{\frac2\pi}
\sum_{n=1}^{\infty}(-1)^n\left ( \frac\pi2-\operatorname{Si}\left ( \pi n^2 \right ) \right )\\
\color{red}{L(0,0,2)}=1\\
L(1,0,1)=\frac{1}{\sqrt{2}}\\
L(0,1,1)=\sqrt{2}\ln(1+\sqrt{2})\\
\color{red}{L(0,0,4)}=2\ln(2)\\
L(2,0,2)=\frac\pi4\\
L(0,2,2)=2G\\
\color{magenta}{L(2,1,1)}
=\frac{\Gamma\left ( \frac14 \right )^2 }{2\sqrt{2\pi} }- \sqrt{2}\pi\,_3F_2\left ( \frac12,\frac12,\frac12;1,\frac32;\frac12 \right )
-\frac{\pi}{16\sqrt{2} }\,_4F_3\left ( 1,1,\frac32,\frac32;2,2,2;\frac12 \right )
+\frac{5\pi}{2\sqrt{2} }\ln(2)\\
L(1,2,1)=\frac{\Gamma\left ( \frac14 \right )^2 }{4\sqrt{\pi} }\\
\color{magenta}{L(1,1,2)}
=\sqrt{2}\pi\,_3F_2\left ( \frac12,\frac12,\frac12;1,\frac32;\frac12 \right )
+\frac{\pi}{16\sqrt{2} }\,_4F_3\left ( 1,1,\frac32,\frac32;2,2,2;\frac12 \right )
-\frac{5\pi}{2\sqrt{2} }\ln(2)\\
L(1,0,3)=\frac{\pi-2G+\ln(2)}{2\sqrt{2} } \\
L(3,0,1)=\frac{\pi+2G-\ln(2)}{2\sqrt{2} }\\
L(0,1,3)=2L_{-8}(2)+\frac{\pi}{2\sqrt{2} }
\ln\left ( 1+\sqrt{2} \right ) -\frac\pi2\\
L(0,3,1)=2L_{-8}(2)-\frac{\pi}{2\sqrt{2} }
\ln\left ( 1+\sqrt{2} \right ) +\frac\pi2\\
\color{red}{L(0,0,6)}=4G-\frac{\pi^2}{6}\\
L(2,0,4)=2G-\frac78\zeta(3)\\
L(0,2,4)=\frac72\zeta(3)-2G\\
L(0,4,2)=4G\\
L(4,0,2)=\frac{\pi^2}{6}\\
\color{magenta}{L(2,2,2)}
=\frac{\Gamma\left ( \frac14 \right )^4 }{8\pi}
-\frac{3\pi^2}{4}\ln(2) +\frac{\pi^2}{64}\,_5F_4\left ( 1,1,\frac32,\frac32,\frac32;2,2,2,2;1 \right )\\
L(3,0,3)=\frac{11\pi^2}{48\sqrt{2} } -\frac{G}{\sqrt{2} }\\
L(0,3,3)=4L_8(3)-\frac{3\pi^2}{8\sqrt{2} }\ln\left ( 1+\sqrt{2} \right )
+\frac{\pi^2}{8}\\
\color{red}{L(0,0,8)}=\frac52\zeta(3)\\
L(4,0,4)=\zeta(3)\\
L(0,4,4)=\frac72\zeta(3)\\
L(4,2,2)=\frac{3\pi^4}{16}
{}_7F_6\left (
\frac12,\frac12,\frac12,\frac12,\frac12,\frac12,\frac54;
\frac14,1,1,1,1,1;1\right )-\int_{0}^{1} \frac{K^\prime{}^3}{K}
\frac{\text{d}k}{k^\prime}\\
L(2,2,4)=\frac{5\pi^4}{32}
{}_7F_6\left (
\frac12,\frac12,\frac12,\frac12,\frac12,\frac12,\frac54;
\frac14,1,1,1,1,1;1\right )-\int_{0}^{1} \frac{K^\prime{}^3}{K}
\frac{\text{d}k}{k^\prime}\\
\color{magenta}{L(2,4,2)}
=\frac{3\pi^3}{8} {}_4F_3
\left ( \frac12,\frac12,\frac12,\frac12;1,1,1;1 \right )
-\frac{\pi^3}{8} {}_5F_4
\left ( \frac12,\frac12,\frac12,\frac12,\frac12;1,1,1,\frac32;1 \right )
-\frac{7\pi}{8}\zeta(3)\\
\color{magenta}{L(2,0,6)}
=\frac{3\pi^3}{16} {}_4F_3
\left ( \frac12,\frac12,\frac12,\frac12;1,1,1;1 \right )
-\frac{\pi^3}{16} {}_5F_4
\left ( \frac12,\frac12,\frac12,\frac12,\frac12;1,1,1,\frac32;1 \right )
-\frac{7\pi}{16}\zeta(3)-\frac{\pi^3}{16}\\
\color{magenta}{L(6,0,2)}
=\frac{3\pi^3}{16} {}_4F_3
\left ( \frac12,\frac12,\frac12,\frac12;1,1,1;1 \right )
-\frac{\pi^3}{16} {}_5F_4
\left ( \frac12,\frac12,\frac12,\frac12,\frac12;1,1,1,\frac32;1 \right )
-\frac{7\pi}{16}\zeta(3)+\frac{\pi^3}{16}\\
\color{red}{L(0,0,10)}=\frac{48}{5}\beta(4)+\frac{2\pi^4}{75}
-\frac{\Gamma\left ( \frac14 \right )^8 }{400\pi^2}\\
L(4,4,2)=\frac{\text{}\Gamma\left ( \frac14 \right )^8 }{160\pi^2}\\
L(4,2,4)=\frac{27\text{ }\Gamma\left ( \frac14 \right )^8 }{1280\pi^2}
-\int_{0}^{1} \frac{K^\prime{}^4}{K}\text{d}k\\
L(0,6,4)
=\frac{93}{20}\zeta(5) -\frac{12}{5}\beta(4)+
\frac{27\,\Gamma\left ( \frac14 \right )^8 }{6400\pi^2}
-\frac15\int_{0}^{1} \frac{K^\prime{}^4}{K}\text{d}k\\
L(0,2,8)
=\frac{93}{20}\zeta(5) -\frac{12}{5}\beta(4)-
\frac{27\,\Gamma\left ( \frac14 \right )^8 }{1600\pi^2}
+\frac45\int_{0}^{1} \frac{K^\prime{}^4}{K}\text{d}k\\
L(0,8,2)=\frac{48}{5}\beta(4)+\frac{\Gamma\left ( \frac14 \right )^8 }{200\pi^2}\\
L(0,4,6)=\frac{48}{5}\beta(4)-\frac{\Gamma\left ( \frac14 \right )^8 }{800\pi^2}\\
L(4,0,6)=\frac{\Gamma\left ( \frac14 \right )^8 }{800\pi^2} -\frac{2\pi^4}{75}\\
L(8,0,2)=\frac{\Gamma\left ( \frac14 \right )^8 }{200\pi^2} +\frac{2\pi^4}{75}\\
\color{red}{L(0,0,12)}=\frac{225}{16}\zeta(5)-\frac{\pi^6}{128}
{}_9F_8\left ( \frac12,\frac12 ,\frac12,\frac12,
\frac12,\frac12,\frac12,\frac12,\frac54;
\frac14,1,1,1,1,1,1,1;1\right )\\
L(0,8,4)=\frac{93}{8}\zeta(5)+\frac{\pi^6}{256}
{}_9F_8\left ( \frac12,\frac12 ,\frac12,\frac12,
\frac12,\frac12,\frac12,\frac12,\frac54;
\frac14,1,1,1,1,1,1,1;1\right )\\
L(0,4,8)=\frac{93}{8}\zeta(5)-\frac{\pi^6}{256}
{}_9F_8\left ( \frac12,\frac12 ,\frac12,\frac12,
\frac12,\frac12,\frac12,\frac12,\frac54;
\frac14,1,1,1,1,1,1,1;1\right )\\
L(8,0,4)=\frac{39}{16}\zeta(5)+\frac{\pi^6}{256}
{}_9F_8\left ( \frac12,\frac12 ,\frac12,\frac12,
\frac12,\frac12,\frac12,\frac12,\frac54;
\frac14,1,1,1,1,1,1,1;1\right )\\
L(4,0,8)=-\frac{39}{16}\zeta(5)+\frac{\pi^6}{256}
{}_9F_8\left ( \frac12,\frac12 ,\frac12,\frac12,
\frac12,\frac12,\frac12,\frac12,\frac54;
\frac14,1,1,1,1,1,1,1;1\right )\\
L(4,4,4)=\frac{\pi^6}{128}
{}_9F_8\left ( \frac12,\frac12 ,\frac12,\frac12,
\frac12,\frac12,\frac12,\frac12,\frac54;
\frac14,1,1,1,1,1,1,1;1\right )
.
\end{array}
$$
Some of them are from a different background and we highlight them in magenta. The red means that they match the form in the original post.
Something hasn't to do with the question
If we set $f_1=\frac{x}{\sqrt{1-x^2} }\frac{K(x)}{
K(x)^2+K^\prime(x)^2},f_2=x\sqrt{1-x^2}\left(3K(x)K^\prime(x)^2-K(x)^3\right)$, an integral identity is given:
$$
\int_{0}^{1} \frac{\sqrt{1-x^2}}{x}
\left(3K^\prime(x)^2-K(x)^2\right)\left ( \frac{1}{\sqrt{1-x^2}}
-\frac{2}{\pi}K(x) \right )\text{d}x=\int_{0}^{1}
\frac{kK(k)^4}{K(k)^2+K^\prime(k)^2}\text{d}k=
L(4,0,4)=\zeta(3).
$$
Reformulate it in an elegant way:
$$
\int_{0}^{1} \frac{
\left (3K^\prime(x)^2-K(x)^2\right )
\left ( \frac{\pi}{2}-K(x)\sqrt{1-x^2} \right )}{x}
\text{d}x=\frac{\pi}{2}\zeta(3).
$$
Here are more applications,
$$
\int_{0}^{1}\left(1-x^4\right)
K(x)^3\left ( 3K(x)^2K^\prime(x)-K^\prime(x)^3\right )\text{d}x
=0,
$$
$$
\int_{0}^{1} \frac{K(x)\ln(1+x)}{\sqrt{1-x^2} }\text{d}x
=\frac{\Gamma\left ( \frac14 \right )^4}{96},
\int_{0}^{1} \frac{K(x)\ln(1-x)}{\sqrt{1-x^2} }\text{d}x
=-\frac{5\text{ }\Gamma\left ( \frac14 \right )^4}{96}.
$$
And a remarkable one,
$$
\int_{0}^{1}\frac{x\ln\left ( \frac{1+x^2}{2} \right )
K(x)K^\prime(x)}{
1-x^2}\text{d}x=-\frac18\pi^2G.
$$
A corresponding and remarkable integral(only obtainable via $q$-expansions):
$$
\int_{0}^{1}\frac{K(k)^3}{
9K(k)^2+K^\prime(k)^2}\text{d}k
=\frac{2G}{9}-\frac{19\zeta(3)}{648}.
$$
With more possible applications, we add
$$
\int_{0}^{1}
\frac{(2k^2-1)K(k)^2\arctan\left ( \frac{K^\prime(k)}{K(k)} \right ) }{
\sqrt{1-k^2} }\text{d}k
=-4\operatorname{Li}_4\left ( \frac12 \right )
-\frac72\zeta(3)\ln(2)+\frac{\pi^2}{6}\ln(2)^2-\frac{1}{6}\ln(2)^4+\frac{151}{2880}\pi^4.
$$