I would like to bound $$\cosh^2\left(t\sqrt{1-\gamma^2}\right)$$ for all $t\in\mathbb{R}$, where $\gamma^2\leq1$. How can I do such thing?
This inequality maybe useful cosh x inequality
I would like to bound $$\cosh^2\left(t\sqrt{1-\gamma^2}\right)$$ for all $t\in\mathbb{R}$, where $\gamma^2\leq1$. How can I do such thing?
This inequality maybe useful cosh x inequality
One may write $$ \cosh^2\left(t\sqrt{1-\gamma^2}\right)=\left(\frac{e^{t\sqrt{1-\gamma^2}}+e^{-t \sqrt{1-\gamma^2}}}2\right)^2\leq \color{blue}{e^{2|t|\sqrt{1-\gamma^2}}},\quad t \in \mathbb{R}, $$ or $$ \cosh^2\left(t\sqrt{1-\gamma^2}\right)=\frac{e^{2t\sqrt{1-\gamma^2}}}4+\frac{e^{-2t\sqrt{1-\gamma^2}}}4+\frac12\leq \color{blue}{\frac{e^{2|t|\sqrt{1-\gamma^2}}}4+\frac34},\quad t \in \mathbb{R}. $$