Yes.
Let $(X, \lVert - \rVert)$ be a Banach space. Then $X \times X$ is a Banach space under the norm $\lVert (x,y) \rVert = \lVert x \rVert + \lVert y \rVert$.
Proof: It's easy to check that this defines a norm, so we just need completeness. Let $(x_n, y_n)$ be a Cauchy sequence in this norm. Let $\varepsilon > 0$ and let $N \in \mathbb{N}$ be such that for all $m,n \ge N$ we have
$$\lVert (x_n, y_n) - (x_m, y_m) \rVert < \varepsilon$$
Then by the definition of our norm we must also have $\lVert x_n - x_m \rVert + \lVert y_n - y_m \rVert < \varepsilon$, and hence $(x_n)$ and $(y_n)$ are Cauchy in $X$, hence convergent, and it's easy to check that if $x_n \to x$ and $y_n \to y$ then $(x_n,y_n) \to (x,y)$. $\square$
(In fact we may choose other norms for $X \times X$.)