prove
For any triangle $\triangle ABC$, prove that
$$\frac{\sin(A-B)}{\sin(A+B)}=\frac{a^2-b^2}{c^2}$$
prove
For any triangle $\triangle ABC$, prove that
$$\frac{\sin(A-B)}{\sin(A+B)}=\frac{a^2-b^2}{c^2}$$
$$\frac{\sin(A-B)}{\sin(A+B)}=\frac{\sin A\cos B-\sin B\cos A}{\sin A\cos B+\sin B\cos A} = \frac{2ac\cos B-2bc\cos A}{2ac\cos B+2bc\cos A}=\frac{(a^2-b^2+c^2)-(-a^2+b^2+c^2)}{(a^2-b^2+c^2)+(-a^2+b^2+c^2)}=\frac{a^2-b^2}{c^2}.$$