Possible Duplicate:
Prove that if $(ab)^i = a^ib^i \forall a,b\in G$ for three consecutive integers $i$ then G is abelian
How can I prove $G$ is abelian if ($a \cdot b)^i = a^i \cdot b^i $ holds for three consecutive integers, i?
My attempt
(1) $(a \cdot b) ^i = a^i \cdot b^i $
(2) $(a \cdot b) ^{i+1} = a^{i+1} \cdot b^{i+1} $
(3) $(a \cdot b) ^{i+2} = a^{i+2} \cdot b^{i+2} $
To prove $a \cdot b = b\cdot a$
Multiplying eqn 1 and 3, we get $(a \cdot b) ^i \cdot (a \cdot b) ^{i+2} = (a \cdot b) ^{2i+2}$ $ =((a \cdot b) ^{i+1})^2$ $ = (a^{i+1} \cdot b^{i+1})^2$ $ =(a^{i+1} \cdot b^{i+1}) \cdot (a^{i+1} \cdot b^{i+1})$
I am stuck at this