5

I have to prove that the series $\displaystyle\sum_{n=1}^\infty {\ln(n^2) \over n^2 }$ converges. The ratio test is inconclusive, so I should use the comparison test, but which series should I compare it with? I tried ${1\over n}$, ${1 \over n^2 }$, but I need a bigger series which converges to prove that this one converges.

StubbornAtom
  • 17,052
Vitto
  • 219

3 Answers3

6

Prove that $0\le \ln n \le \sqrt{n}$ first, and $$ 0\le \frac{\ln n^2}{n^2} =\frac{2\ln n}{n^2} \le \frac{2}{n\sqrt{n}}. $$ $\sum_{n=1}^{\infty}\frac{2}{n\sqrt{n}}$ converges.

choco_addicted
  • 8,786
  • 8
  • 24
  • 53
3

Consider $a_n:=\frac{\ln (n^2)}{n^2}$, $b_n:=\frac{1}{n^{3/2}}$. We have that

$$\lim\limits_{n \to \infty}\frac{a_n}{b_n}=\lim\limits_{n \to \infty}\frac{\ln (n^2)}{n^{1/2}}=\lim\limits_{n \to \infty}\big(2\cdot \frac{\ln (n)}{n^{1/2}}\big)=0.$$

Therefore, there exists $N$ such that $n>N$ implies $\frac{a_n}{b_n}<1$. Hence, $n> N$ implies $a_n< b_n$, and the comparison test yields convergence.

0

Stolz-Cesaro theorem for $a_n = \log n, b_n = n^2$: $$ \sum_{k=1}^{\infty} \frac{\log (k+1) -\log k}{(k+1)^2 - k^2} \sim \sum_{k=1}^{\infty} \frac{1}{k(2k+1)} \sim \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k^2} $$

The second step is due to Maclaurin series expansion. The last is a famous $\zeta(2)$.

Alex
  • 19,262