4

I am sorry to ask so many of these questions in such as short time span.

But how would I prove this following trigonometric identity. $$ \frac{1+\cos(2A)}{\sin(2A)}=\cot A $$ My work thus far is $$ \frac{1+\cos^2A-\sin^2A}{2\sin A\cos A} $$ I know $1-\sin^2A=\cos^2A$

So I do $$ \frac{\cos^2A+\cos^2A}{2\sin A\cos A} $$ I know not what I do next.

3 Answers3

5

$$ \begin{align} \frac{1+\cos(2A)}{\sin(2A)} &=\frac{1+\cos^2(A)-\sin^2(A)}{2\sin(A)\cos(A)}\tag{1}\\ &=\frac{\csc^2(A)+\cot^2(A)-1}{2\,\cot(A)}\tag{2}\\ &=\frac{2\,\cot^2(A)}{2\,\cot(A)}\tag{3}\\[4pt] &=\cot(A)\tag{4} \end{align} $$

  1. double angle formulas

  2. multiply numerator and denominator by $\csc^2(A)$

  3. $\cot^2(A)+1=\csc^2(A)$

  4. cancel $2\cot(A)$ in numerator and denominator

robjohn
  • 345,667
5

$$\frac{1+\cos(2A)}{\sin(2A)} = \frac{2\cos^2 A}{2\sin A \cdot \cos A} = \frac{\cos A}{\sin A} = \cot A$$

iostream007
  • 4,529
3

Just write $\cos^2 A+\cos^2 A=2\cos^2 A$ (a quantity added to itself is twice the quantity). Then write $2\cos^2 A=2\cos A\cdot\cos A$ and cancel a $2\cos A$ term in the numerator with the $2\cos A$ term in the denominator.

David Mitra
  • 74,748