There are several ways of doing this, but I'll go with the most "elementary".
Let $\varphi$ be a nonzero multiplicative functional on $\ell^\infty(\mathbb{N})$. Since $\varphi(1)=\varphi(1^2)=\varphi(1)^2$, we get that $\varphi(1)=1$ (it cannot be zero, because then $\varphi=0$).
Now let $a\in\ell^\infty(\mathbb{N})$ such that $a(n)\in\{0,1\}$ for all $n$. Write $\alpha=\varphi(a)$. As $a(1-a)=0$, we have
$$
0=\varphi(a(1-a))=\varphi(a)\varphi(1-a)=\alpha(1-\alpha).
$$
So either $\alpha=0$ or $\alpha=1$.
Note that we can write $a=1_A$, $A\subset\mathbb{N}$, where $A=\{n: a(n)=1\}$. Now define
$$
\mathcal U=\{A:\ \varphi(1_A)=1\}.
$$
We can see that
- $\mathbb{N}\in\mathcal U$ (since $\varphi(1)=1$)
- $A\in\mathcal U\ \iff\ A^c\not\in\mathcal U$ (because $1_A\,1_{A^c}=0$)
- If $A,B\in\mathcal U$, then $A\cap B\in\mathcal U$ (because $1_{A\cap B}=1_A\,1_B$)
- If $A\in\mathcal U$ and $A\subset B$, then $B\in\mathcal U$ (because $1_A=1_A\,1_B$)
In other words, $\mathcal U$ is an ultrafilter.
Now let $c\in\ell^\infty(\mathbb{N})$ be positive, i.e. $0\leq c\leq 1$. Define sets
$$
A_j^{(n)}=\{m:\ \frac{j}{2^n}\leq c(m)<\frac{(j+1)}{2^n}\},\ \ j=0,1,\ldots,2^n.
$$
For fixed $n$, these sets are pairwise disjoint and $$\tag{1}\bigcup_jA_j^{(n)}=\mathbb{N}.$$
As $\mathcal U$ is an ultrafilter, for each $n$ there is exactly one $j(n)$ such that $A_{j(n)}^{(n)}\in\mathcal U$, and none of the others is (if $A\cup B=\mathbb N$, then either $A\in\mathcal U$ or $B=A^c\in\mathcal U$; by induction, this applies to arbitrary partitions of $\mathbb N$).
Define
$$
c_n=\sum_{j=0}^{2^n-1}\,\frac{j}{2^n}\,1_{A_j^{(n)}}.
$$
By definition, $\|c-c_n\|\leq 2^{-n}$, so $c_n\to c$ in norm. As $\varphi$ is norm-continuous, we have $\varphi(c)=\lim_n\varphi(c_n)$. And
$$
\varphi(c_n)=\sum_{j=0}^{2^n-1}\,\frac{j}{2^n}\,\varphi(1_{A_j^{(n)}})=\frac{j(n)}{2^n},
$$
so
$$
\varphi(c)=\lim_n \ c(j(n))=\lim_{\mathcal U}\ c.
$$
Last step is to extend by linearity to all of $\ell^\infty(\mathbb{N})$.