Let $(X,d)$ be a metric space and let $A \subseteq X$. We define the distance from a point $x \in X$ to $A$ by $d(x,A)= \inf \{ d(x,a) : a \in A \} $.
What will be the value of $d(x, \emptyset )$? I am confused between $+ \infty $ and $- \infty$. Also, is it possible to find $ \min \{ d(x,a) : a \in \emptyset \} $? (I know $\emptyset$ is empty, just asking symbolically whether we can take $\min$ instead of $\inf$)
Thanks.