Show that
$$\int_{-\infty}^\infty {{\cos(mx)}\over(x^2+a^2)(x^2+b^2)}dx={\pi(ae^{-mb}-be^{-ma})\over ab(a^2-b^2)}$$
where $a,b,m>0$ and $a$ is not equal to $b$.
I already know that $\int_{-\infty}^\infty {{1} \over(x^2+a^2)(x^2+b^2)}dx={\pi\over ab(a+b)}$.
I'm wondering if I can use this fact at all.
I'm not sure how to deal with the $\cos(mx)$ term.
Any solutions or help is greatly appreciated.