Simple trick: If we set $ x=\frac{1}{2u}$ that is $\frac{1}{x} =2u$ then, $dx = -\frac{1}{2u^2}du$ and Given that $\lim_{u\to \infty}\frac{ \sin^2 u}{u} = \lim_{u\to 0}\frac{ \sin^2 u}{u} =0$ we get
\begin{split}
\int_0^{+\infty} \frac{\sin(1/x)}{x}\ dx &=& \int_0^{+\infty} 2u \sin(2u) \left(\frac{1}{2u^2}du\right)= \int_0^{+\infty} \frac{\sin(2u)}{u} \ du\\&=&
\int_0^{+\infty} \frac{2\cos u\sin u}{u} \ du=
\int_0^{+\infty} \frac{(\sin^2 u)'}{u} \ du~~~~\text{since}~~~~(\sin^2 u)' =2\cos u\sin u\\&=&
\left[\frac{ \sin^2 u}{u} \right]_0^\infty+\int_0^{+\infty} \frac{ \sin^2 u}{u^2} \ du~~~\text{by integration by part}~\\&=&\color{blue}{\int_0^{+\infty} \frac{ \sin^2 u}{u^2}du=\int_0^{+\infty} \frac{ \sin u}{u}du =\frac{π}{2 }}
\end{split}
you Can get the last line from the first line or see this post here and use the following:Evaluating the integral $\int_0^\infty \frac{\sin x} x \ dx = \frac \pi 2$?
Proof of the convergence However, For $u>1$ $$\frac{\sin^2u}{u^2}\le \frac{1}{u^2} \implies \int_1^{+\infty} \frac{ \sin^2 u}{u^2}du \le \int_0^{+\infty} \frac{ 1}{u^2}du$$ and For $u<1$
$$ |\sin u|\le |u|\implies \frac{\sin^2 u}{u^2}\le 1 \implies \int_0^{1} \frac{ \sin^2 u}{u^2}du\le 1.$$
Thus,
\begin{split}
\color{red}{\int_0^{+\infty} \frac{\sin(1/x)}{x}\ dx = \int_0^{+\infty} \frac{ \sin^2 u}{u^2}du<\infty}
\end{split}