Let $x$ be a root of $f=t^3-t^2+t+2 \in \mathbb{Q}[t]$ and $K=\mathbb{Q}(x)$. Express $\frac{1}{x-1}$ in the form $ax^2+bx+c$, where $a,b,c\in \mathbb{Q}$.
I have proved that $f$ is the minimal polynomial of $x$ over $\mathbb{Q}$ but I am stuck showing the above claim. I tried writing $\frac{1}{x-1}=ax^2+bx+c$ and solve for $a,b,c$ but it didn't seem to work. Any idea?