Since we don't need Taylor Series at all, I thought it might be instructive to present a way forward that avoids series expansions.
Note that we can write
$$\begin{align}
\frac{(\sin(x)-x)(\cos(x)-1)}{x(e^x-1)^4}&=-\frac{\frac{\sin(x)-x}{x^3}\,\frac{1-\cos(x)}{x^2}}{\left(\frac{e^x-1}{x}\right)^4}\\\\
&-\frac{\frac{\sin(x)-x}{x^3}\,\frac{2\sin^2(x/2)}{x^2}}{\left(\frac{e^x-1}{x}\right)^4}
\end{align}$$
Now, it is easy to show using the inequalities from elementary geometry
$$|x\cos(x)|\le |\sin(x)|\le |x|$$
for $|x|\le \pi/2$, that
$$\bbox[5px,border:2px solid #C0A000]{\lim_{x\to 0}\frac{2\sin^2(x/2)}{x^2}=\frac12}$$
In addition, I showed in THIS ANSWER using only the limit definition of the exponential function and Bernoulli's Inequality that
$$1+x\le e^x\le \frac{1}{1-x}$$
for $x<1$. Then, it is easy to see that
$$\bbox[5px,border:2px solid #C0A000]{\lim_{x\to 0}\left(\frac{e^x-1}{x}\right)^4=1}$$
We are left only to find the limit
$$\begin{align}
\lim_{x\to 0}\frac{\sin(x)-x}{x^3}&=\lim_{x\to 0}\frac{\cos(x)-1}{3x^2}\\\\
&=-\frac16
\end{align}$$
using L'Hospital's Rule once followed by using the aforementioned limit $\lim_{x\to 0}\frac{2\sin^2(x/2)}{x^2}=\frac12 $.
Putting it all together, we find the limit of interest is
$$\bbox[5px,border:2px solid #C0A000]{\lim_{x\to 0}\frac{(\sin(x)-x)(\cos(x)-1)}{x(e^x-1)^4}=\frac{1}{12}}$$