0

Prove that $\displaystyle\sum_{k=0}^{n-1}\cos\left(\frac{2\pi k}{n}+\phi\right)=0$ for $n\in\mathbb{N},n>1$

I'm thinking at a demonstration by induction, as base case $n=2$

$$\sum_{k=0}^{n-1}\cos\left(\frac{2\pi k}{n}+\phi\right)=\sum_{k=0}^{1}\cos\left(\frac{2\pi k}{n}+\phi\right)=\cos\phi+\cos(\pi+\phi)=\cos\phi-\cos\phi=0$$ but I don't have any idea to inductive step, how can someone prove this?

I'm thinking use this to proof that $\displaystyle\sum_{k=0}^{n-1}\alpha^{k}=0$ where $\alpha=\exp\left(\frac{2\pi}{n}\iota\right)$, thanks for any help.

Jack D'Aurizio
  • 353,855
cand
  • 2,266

3 Answers3

4

Your sum is the real part of

$$\sum_{k=0}^{n-1}e^{i(2\pi k/n+\phi)}=e^{i\phi}\sum_{k=0}^{n-1}\left(e^{i2\pi /n}\right)^k=e^{i\phi}\frac{e^{in2\pi/n}-1}{e^{i2\pi/n}-1}=0.$$

1

$$ \begin{align} \sum_{k=0}^{n-1}\cos\left(\frac{2\pi k}{n}+\phi\right) &=\mathrm{Re}\left(\sum_{k=0}^{n-1}e^{\frac{2\pi ik}n+i\phi}\right)\\ &=\mathrm{Re}\left(e^{i\phi}\sum_{k=0}^{n-1}e^{\frac{2\pi ik}n}\right)\\ &=\mathrm{Re}\left(e^{i\phi}\frac{1-e^{\frac{2\pi in}n}}{1-e^{\frac{2\pi i}n}}\right)\\ &=\mathrm{Re}\left(e^{i\phi}\frac{1-e^{2\pi i}}{1-e^{\frac{2\pi i}n}}\right)\\[6pt] &=\mathrm{Re}(0)\\[12pt] &=0 \end{align} $$ As long as $n\ge2$, $1-e^{\frac{2\pi i}n}\ne0$.

robjohn
  • 345,667
1

Since the sum of the $n$-th roots of unity is zero, we have: $$ \sum_{k=0}^{n-1}\cos\left(\frac{2\pi k}{n}\right) = \sum_{k=0}^{n-1}\sin\left(\frac{2\pi k}{n}\right) = 0.\tag{1}$$ For a given $n$, the function: $$ f_n(\phi) = \sum_{k=0}^{n-1}\cos\left(\frac{2\pi k}{n}+\phi\right) $$ is quite trivially an analytic function (as the sum of $n$ analytic functions), but due to $(1)$ we have $f_n(0)=f_n'(0)=f_n''(0)=\ldots=0$, hence $\color{red}{f_n\equiv 0}$.

As an alternative, for every $n$ we have that $f_n(\phi)$ is a solution of the differential equation $f''(\phi)+f(\phi)=0$ fulfilling the constraints $f(0)=f'(0)=0$. The solutions are unique and global by the Cauchy-Lipschitz theorem, hence the same conclusion as above holds.

Jack D'Aurizio
  • 353,855