Prove that:$$\cos x+\cos(2x)+\cdots+\cos (nx)=\frac{\sin(\frac{nx}{2})\cos\frac{(n+1)x}{2}}{\sin(\frac{x}{2})}.\ (1)$$
My attempt:$$\sin\left(\frac{x}{2}\right)\sum_{k=1}^{n}\cos{(kx)}$$$$=\sum_{k=1}^{n}\sin\left(\frac{x}{2}\right)\cos{(kx)} $$ (Applying $\sin x\cos y =\frac{1}{2}\left[\sin(x+y)+\sin(x-y)\right]$) $$=\sum_{k=1}^{n}\frac{1}{2}\sin\left(\frac{x}{2}-kx\right)+\frac{1}{2}\sin\left(\frac{x}{2}+kx\right).$$Multiplying $(1)$ by $\sin\left(\frac{x}{2}\right)$ ,gives: $$\sum_{k=1}^{n}\sin\left(\frac{x}{2}\right)\cos(kx)=\sin\left(\frac{nx}{2}\right)\cos{\frac{(n+1)x}{2}}$$ $$\Leftrightarrow\sum_{k=1}^{n}\left[\sin\left(\frac{x}{2}-kx\right)+\sin\left(\frac{x}{2}+kx\right)\right]=\sin\left(-\frac{x}{2}\right)+\sin\left(\frac{x}{2}+nx\right).$$Then, by induction on $n$ and using $(\sin x\sin y)$ and $(\sin x +\sin y)$ formulas, I end in here: $$\sum_{k=1}^{n+1}\sin\left(\frac{x}{2}\right)\cos(kx)=\left[2\sin\left(\frac{nx}{2}\right)\cos\frac{(n+1)x}{2}\right]+\left[2\sin\left(\frac{x}{2}\right)\cos(n+1)x\right].$$ Any help would be appreciated, thanks!