My analysis: The second term can be proven to be convex as follows. It is basically a composition of norm with an affine transformation to the power of four: $(x_1^2+x_2^2+x_3^2+1)^2 = \|(x_1^2, x_2^2, x_3^2, 1)^T\|^4$. We know that (1) norm is convex (2) composition of norm as a convex function with an affine transformation is convex and (3) raising to the power of an even number, i.e. 4, preserves the convexity of a convex function. Thus, the above term is a composition of a non-decreasing convex function, i.e power of four, with an affine transformation of a norm and thus $(x_1^2+x_2^2+x_3^2+1)^2$ is convex.
The first is term is a challenge for me. I know that $2x_1^2+3x_2^2+x_3^2+4x_1x_2$ can be written as $\mathbf{x}^T A \mathbf{x}$ where $$ A= \left[ \begin{array}{ccc} 2 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 1 \end{array} \right] $$
It is easy to check that all the eigen values of $A$ are strictly positive which makes $\mathbf{x}^T A \mathbf{x}$ convex. Thus, $2x_1^2+3x_2^2+x_3^2+4x_1x_2+7$ is convex. Now, the issue is that square-root is concave and does not preserve the convexity. How should I proceed from here?