Let G be a group and let $a$ be an element of G of order $n$. For each Integer $k$ between $1$ and $n$,
show that $\left | a^{k} \right |=\left | a^{n-k} \right |$
My attempt is as follows:
$\left | a \right |=\left | \left \langle a \right \rangle \right |=n$
Thus, $\left \langle a \right \rangle=\left \{ e,a^{1},a^{2},\cdot \cdot \cdot ,a^{n-1} \right \}$
The elements in $\left \langle a \right \rangle$ are of the form $a^{k} \forall k \in \mathbb{Z}^{+}$
Theorem: criterion for $a^{i}=a^{j}$
$a^{k}=a^{n-k}$ If and Only If $n\mid \left ( k-\left ( n-k \right ) \right )$
so, $a^{k}=a^{n-k}$ If and Only If $n\mid \left ( 2k-n \right )$
At this point, I am clearly stuck. I would like to request a hint. Thanks in advance.