Let $\beta=\{u_1,u_2,\ldots,u_m\}$ be a basis for ${\rm range}(T)$ and
$\gamma=\{v_1,v_2,\ldots,v_n\}$ be a basis for ${\rm ker}(T)$. Then we may write
$u_i=Tw_i$ for some $w_i\in V$, where $1\le i\le m$. Now, it suffices to claim that
\begin{align}
\alpha=\{v_1,v_2,\ldots,v_n,w_1,w_2,\ldots,w_m\}
\end{align}
is a basis for $V$.
- Given $a_1,a_2,\ldots,a_n$ and $b_1,b_2,\ldots,b_m$ be scalars such that
\begin{align}
\sum_{i=1}^na_iv_i+\sum_{j=1}^mb_jw_j={\it 0}.\tag{1}
\end{align}
Then
\begin{align}
{\it 0}
&=T\left(\sum_{i=1}^na_iv_i+\sum_{j=1}^mb_jw_j\right)\\
&=\sum_{i=1}^na_iTv_i+\sum_{j=1}^mb_jTw_j\\
&=\sum_{j=1}^mb_ju_j,
\end{align}
which follows that $b_j=0$ for each $j$ because $\beta$ is a basis for ${\rm range}(T)$. Thus equation $(1)$ becomes $\sum_{i=1}^na_iv_i={\it 0}$,
but since $\gamma$ is a basis for ${\rm ker}(T)$, we must have $a_i=0$ for each $i$. Hence $\alpha$ is linearly independent.
- Given $v\in V$, then $Tv\in{\rm range}(T)$ and we can write
$Tv=\sum_{i=1}^m\lambda_iTw_i=T\left(\sum_{i=1}^m\lambda_iw_i\right)$
for some scalars $\lambda_1,\lambda_2,\ldots,\lambda_m$. It follows that
$$T\left(v-\sum_{i=1}^m\lambda_iw_i\right)=Tv-T\left(\sum_{i=1}^m\lambda_iw_i\right)={\it 0},$$
that is, $v-\sum_{i=1}^m\lambda_iw_i\in{\rm ker}(T)$. Thus we can write
$v-\sum_{i=1}^m\lambda_iw_i=\sum_{j=1}^n\mu_jv_j$ for some scalars
$\mu_1,\mu_2,\ldots,\mu_n$. That is,
$$v=\sum_{i=1}^m\lambda_iw_i+\sum_{j=1}^n\mu_jv_j.$$
Hence $\alpha$ generates $V$.
By checking the above two steps, we conclude that $\alpha$ is a basis for $V$, and therefore $V$ is finite-dimensional.