If $n$ balls are thrown into $k$ bins (uniformly at random and independently), what is the probability that every bin gets at least one ball? i.e. If we write $X$ for the number of empty bins, what is $P(X=0)$?
I was able to calculate the $E(X)$ and thus bound with Markov's inequality $P(X \geq 1) \le E(X)$ but I don't how to work out an exact answer.
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/588.596.pdf