$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\, #2 \,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}
&\color{#f00}{\sum_{m = \ell}^{n}{n \choose m}{m \choose \ell}
\pars{-1}^{m - \ell}} =
\pars{-1}^{\ell}\sum_{m = 0}^{\infty}\pars{-1}^{m}{n \choose \ell}
{n - \ell \choose m - \ell}
\\[3mm] = &\
\pars{-1}^{\ell}{n \choose \ell}\sum_{m = 0}^{\infty}\pars{-1}^{m}
{n - \ell \choose n - m} =
\pars{-1}^{\ell}{n \choose \ell}\sum_{m = 0}^{\infty}\pars{-1}^{m}\
\overbrace{%
\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{n - \ell} \over z^{n - m + 1}}
\,{\dd z \over 2\pi\ic}}^{\ds{=\ {n - \ell \choose n - m}}}
\\[3mm] = &
\pars{-1}^{\ell}{n \choose \ell}
\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{n - \ell} \over z^{n + 1}}
\sum_{m = 0}^{\infty}\pars{-z}^{m}\,{\dd z \over 2\pi\ic} =
\pars{-1}^{\ell}{n \choose \ell}\ \overbrace{%
\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{n - \ell - 1} \over z^{n + 1}}
\,{\dd z \over 2\pi\ic}}^{\ds{=\ {n - \ell - 1 \choose n}}}
\\[3mm] = &\
\pars{-1}^{\ell}{n \choose \ell}{n - \ell - 1 \choose n} =
\pars{-1}^{\ell}{n \choose \ell}\ \underbrace{%
{-n + \ell + 1 + n - 1 \choose n}\pars{-1}^{n}}
_{\ds{=\ {n - \ell - 1 \choose n}}}
\\[3mm] = &\
\pars{-1}^{\ell + n}{n \choose \ell}{\ell \choose n} =
\color{#f00}{\left\lbrace\begin{array}{l}
\ds{1\quad\mbox{if}\quad\ell = n}
\\
\ds{0}\quad\mbox{otherwise}
\end{array}\right.}
\end{align}