Let (M,W) be a continous probability space (take M=(a,b)), and let $x:M \rightarrow \mathbb{R} $ be a random variable which is bounded. Prove that
$ \inf_{t\in M} x(t) \le E(x) \le \sup_{t \in M} x(t)$
Hello, We only get a quick introduction on elements of probabilities for our modelling course.We say that W have two properties: $-)W(M)=1$, $-)$if $A \cap B = \emptyset \Rightarrow W(A \cup B)=W(A)+W(B) $. As a example of continous probability space we consider the case for $M=(a,b)$. In this case the probability density function (when it exists) is definied as $f(t):= \lim_{\Delta t \rightarrow 0} \frac{W(t, t + \Delta t))}{\Delta t} $ and for a random real variable $X:M \rightarrow \mathbb{R}, x=x(t)$ we define the expected value of x when the density function exists as $E(x)=\int_a^b x(t) f(t) dt $
Back to the exercise: $\exists K \ge 0: -K \le x(t) \le K \forall t \in M$
It follows that $-K \le \inf_{t \in M} x(t) \le x(t) \le \sup_{t\in M} x(t) \le K \forall t \in M $
So $\inf_{t \in M} x(t) \int_a^b\lim_{\Delta t \rightarrow 0} \frac{W(t, t + \Delta t))}{\Delta t}dt \le E(X) \le \sup_{t\in M} x(t)\int_a^b\lim_{\Delta t \rightarrow 0} \frac{W(t, t + \Delta t))}{\Delta t}dt$
We don´t discuss that the integral of the density function should be 1 on the whole intervall, we only defined it as above.
Now i must prove: $\int_a^b\lim_{\Delta t \rightarrow 0} \frac{W(t, t + \Delta t))}{\Delta t}dt=1$
For this i want to use the fundamental theorem of calculus. $ \lim_{\Delta t \rightarrow 0} \frac{W((t,t+\Delta t))}{\Delta t}= \lim_{\Delta t \rightarrow 0} \frac{1- W((a,t] \cup [t+ \Delta t,b))}{\Delta t}= \lim_{\Delta t \rightarrow 0} \frac{1- W((a,t]) - W( [t+ \Delta t,b))}{\Delta t}=\lim_{\Delta t \rightarrow 0} \frac{-W((a,t]) + W((a,t + \Delta t))}{\Delta t}$
Now i define $p:t \rightarrow W((a,t))$
fundamental theorem of calculus: $ \int_a^b p'(t) dt = p(b)-p(a)=W((a,b))-W((a,a))=1- W((a,a))$
But my problem is that i must show that the probability of one discrete point is $0$. How i can do these?