Note that for a finite upper limit $b$, we have (assuming $w \neq 0$)
$$\begin{aligned}
\int_0^{b}e^{-iwt} dt &=
\left.-\frac{e^{-iwt}}{iw}\right|_{t=0}^{t=b} \\
& = \frac{1-e^{-iwb}}{iw} \\
&= e^{-iwb/2}\left(\frac{e^{iwb/2} - e^{-iwb/2}}{iw}\right) \\
&= 2e^{-iwb/2}\frac{\sin(wb/2)}{w} \\
\end{aligned}$$
Taking the absolute value, we obtain
$$\left|\int_0^b e^{-iwt} dt\right| = \left|\frac{2}{w}\right|\cdot\left|\sin(wb/2)\right|$$
For fixed $w$ and $b \to \infty$, the first factor on the right hand side is constant, but the second factor oscillates in the range $[0,1]$. Therefore,
$$\lim_{b \to \infty}\left|\int_0^b e^{-iwt}dt\right|$$
does not converge. Consequently, neither does
$$\lim_{b \to \infty}\int_0^b e^{-iwt}dt$$
which means that the improper integral
$$\int_0^{\infty}e^{-iwt}dt$$
does not exist.