Find the value of $x$ if $$\sec^{-1}\sqrt{5}+\csc^{-1}\frac{\sqrt{10}}{3}+\cot^{-1}\frac{1}{x}=\pi$$ First i tried to calculate the value of
$$\sec^{-1}\sqrt{5}+\csc^{-1}\frac{\sqrt{10}}{3}=\sin^{-1}\frac{2}{\sqrt{5}}+\sin^{-1}\frac{3}{\sqrt{10}}$$ Letting
$$\theta=\sin^{-1}\frac{2}{\sqrt{5}}+\sin^{-1}\frac{3}{\sqrt{10}}$$ taking $\sin$ both sides and using $sin(A+B)=sinAcosB+cosAsinB$ we get
$$\sin\theta=\sin\left(\sin^{-1}\frac{2}{\sqrt{5}}\right)\cos\left(\sin^{-1}\frac{3}{\sqrt{10}}\right)+\cos\left(\sin^{-1}\frac{2}{\sqrt{5}}\right)\sin\left(\sin^{-1}\frac{3}{\sqrt{10}}\right)$$ so
$$\sin\theta=\frac{5}{\sqrt{50}}=\frac{1}{\sqrt{2}}$$
Now my doubt is will $\theta=\frac{\pi}{4}$ or $\theta=\frac{3\pi}{4}$ ?
My book has taken $\theta=\frac{3\pi}{4}$