We assume that $\sum |a_n|^{2}$ converges, then I want to conclude that $\prod (1+a_n)$ converges to a non zero element $\iff$ the series $\sum a_n$ converges.
My attempt
If $\prod (1+a_n)$ converges to a non zero element then we can write
$$\prod (1+a_n)= \prod \exp(\ln(1+a_n))= \exp(\sum \ln (1+a_n)) \le \exp(\sum |\ln (1+a_n)|)$$
Then using that $\sum |a_n|^{2}$ converges we can choose $n$ such that $|a_n|^2 < \frac{1}{4}$ and we know that $|ln(1+z)|\le 2 |z|$ if $|z|< \frac{1}{2}$ using the series expansion, we get that
$$\exp(\sum |\ln (1+a_n)|) \le \exp(\sum 2|a_n|)$$
For the converse I want to use the result that says that if $\sum |a_n|$ converges then $\prod (1+a_n)$ converges so since we have that $\sum |a_n|^{2}$ converges then $\sum |a_n|$ converges and $\prod (1+a_n)$ does too.
Questions
But from here I don't know if I am right, how to conclude and solve the converse part to say that we have a non zero limit, and another thing Can someone provide explicit examples of a sequence of complex numbers $\{a_n\}$ such that $\sum a_n$ converges but $\prod (1+a_n)$ diverges and the other way around (This is $\prod (1+a_n)$ converges but $\sum a_n$ diverges )?
Thanks a lot in advance.