I saw the related posts, and I tried a different proof. Please have a look.
Let $D$ be any field with $|D|=6$.
$|D|=6<\infty \Longrightarrow Char(D)\neq 0\Longrightarrow Char(D)=prime\ number$
From the theorem of Lagrange in $(D,+)$ we have that: $$ord(1_R) \mid |D| \Longrightarrow Char(D)\mid |D|\Longrightarrow Char(D)\mid 6$$ So, $Char(D)=2$ or $3$.
- $Char(D)=2$
$\forall x\in U(D):ord(x)=Char(D) \Longrightarrow ord(x)=2 \Longrightarrow 2x=0_D \Longrightarrow x=-x $ (*)
If $H= \{0_D, a,b,a+b\} $ from (*) $(H,+)\leq (D,+)$ and from Theorem Of Lagrange we have that $|H|\mid |D| \Longrightarrow4|6$, contradiction.
- $Char(D)=3$
Can we find another additive subgroup of $(D,+)$ with 4 or 5 elements to work on the same say as above?