There are other proofs on MSE, for example this one, but I find its use of the floor function unnecessarily fiddly. I think the following is a bit more straightforward, but a certain amount of grunge seems unavoidable.
Let's prove that difference between the two expressions becomes small as $n \to \infty$. In other words, given $\epsilon > 0$, we want to show that there is some $N$ such that whenever $n \geq N$, we have
$$e_n(x) = \left|\left(1 + \frac{x}{n}\right)^n - \sum_{k=0}^{n}\frac{x^k}{k!}\right| < \epsilon$$
We manipulate the right hand side as follows:
$$\begin{aligned}
e_n(x)
&= \left|\sum_{k=0}^{n}{n \choose k}\left(\frac{x}{n}\right)^k - \sum_{k=0}^{n}\frac{x^k}{k!}\right|\\
&= \left|\sum_{k=0}^{n} \frac{x^k}{k!} \left( \frac{n!}{(n-k)!n^k} - 1\right)\right| \\
&= \left|\sum_{k=0}^{n} \frac{x^k}{k!} \left( \frac{n}{n}\cdot\frac{n-1}{n}\cdot\frac{n-2}{n}\cdots\frac{n-k+1}{n} - 1\right)\right| \\
&= \left|\sum_{k=0}^{n} \frac{x^k}{k!} \left( 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{k-1}{n}\right) - 1\right)\right| \\
&\leq \sum_{k=0}^{n}\frac{|x|^k}{k!} \left|a_{k,n} - 1\right|
\end{aligned}$$
where
$$a_{k,n} = \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{k-1}{n}\right)$$
Note that for $0 \leq k \leq n$, all of the factors are between $0$ and $1$, so
$$0 < a_{k,n} \leq 1$$
Let $\epsilon > 0$.
For fixed $k$, it is clear that $a_{k,n} \to 1$ as $n \to \infty$, so $|a_{k,n} - 1| \to 0$ as $n \to \infty$. Therefore, there is some $N_k$ such that $|a_{k,n} - 1| < \epsilon$ for all $n \geq N_k$.
Now, fix a positive integer $m$. If we set $N = \max\{N_1,N_2,\ldots,N_m\}$, then $|a_{k,n} - 1| < \epsilon$ for all $k \leq m$ and $n \geq N$, in which case
$$\begin{aligned}
e_n(x)
&\leq \sum_{k=0}^{m}\frac{|x|^k}{k!}|a_{k,n}-1| + \sum_{k=m+1}^{n}\frac{|x|^k}{k!}|a_{k,n}-1| \\
&\leq \epsilon \sum_{k=0}^{m}\frac{|x|^k}{k!} + \sum_{k=m+1}^{n}\frac{|x|^k}{k!} \\
&\leq \epsilon \sum_{k=0}^{\infty}\frac{|x|^k}{k!} + \sum_{k=m+1}^{\infty}\frac{|x|^k}{k!} \\
&= \epsilon e^{|x|} + \sum_{k=m+1}^{\infty}\frac{|x|^k}{k!} \\
\end{aligned}$$
Therefore,
$$\limsup_{n \to \infty}e_n(x) \leq \epsilon e^{|x|} + \sum_{k=m+1}^{\infty}\frac{|x|^k}{k!}$$
Letting $m \to \infty$ we get
$$\limsup_{n \to \infty}e_n(x) \leq \epsilon e^{|x|}$$
As this is true for any $\epsilon > 0$, we conclude that $\limsup_{n \to \infty}e_n(x) = 0$, and therefore the limit exists and
$$\lim_{n \to \infty}e_n(x) = 0$$
as desired.