This is a follow up to this question. Any help would be very much appreciated.
Let $k\in\mathbb{N}$ be odd and $N\in\mathbb{N}$. You may assume that $N>k^2/4$ or some other $N>ak^2$.
Let $\zeta:=\exp(2\pi i/k)$ and $\alpha_v:=\zeta^v+\zeta^{-v}+\zeta^{-1}$.
Here there are five questions of varying intricacy. An answer to four is what I am hoping to achieve myself but an answer to an earlier part should go a long way towards helping and obviously an answer to part 5. would be amazing.
I have given a fairly trivial bound below which is good for my needs. If I don't get a better answer by the end of the bounty period I will accept my own (CW) answer and grant charMD the bounty.
Simplify, where $v\in\{1,2,\dots,(k-1)/2\}$, $$1-\sin^2\left(\frac{2\pi v}{k}\right)\Re\left((\alpha_v\zeta)^N\right)+|\alpha_v|^{2N}.$$
Upper bound, where $v\in\{1,2,\dots,(k-1)/2\}$, $$\sec^2\left(\frac{2\pi v}{k}\right)\left(1-\sin^2\left(\frac{2\pi v}{k}\right)\Re\left((\alpha_v\zeta)^N\right)+|\alpha_v|^{2N}\right)\leq f_2(v,k,N).$$
Simplify, where $v\in\{1,2,\dots,(k-1)/2\}$, $$\sec^2\left(\frac{2\pi v}{k}\right)\left(1-\sin^2\left(\frac{2\pi v}{k}\right)\Re\left((\alpha_v\zeta)^N\right)+|\alpha_v|^{2N}\right).$$
Upper bound $$\frac{1}{4^{2N-1}}\sum_{v=1}^{\frac{k-1}{2}}\sec^2\left(\frac{2\pi v}{k}\right)\left(1-\sin^2\left(\frac{2\pi v}{k}\right)\Re\left((\alpha_v\zeta)^N\right)+|\alpha_v|^{2N}\right)\leq f_4(k,N).$$
Sum $$\frac{1}{4^{2N-1}}\sum_{v=1}^{\frac{k-1}{2}}\sec^2 \left(\frac{2\pi\,v}{k}\right)\left(1-\sin^2\left(\frac{2\pi v}{k}\right)\Re\left((\alpha_v\zeta)^N\right)+|\alpha_v|^{2N}\right).$$