I am really struggling with understanding how to do this proof directly.
Let A be a linear transformation of a vector space V and let A' be its adjoint. Show directly that $\mathrm{nullspace}(A)^o=\mathrm{range}(A')$.
This is where I am at...
- Let $h \in \text{Im } A^{*}$. Then there exists $f \in V^{*}$ such that $f(A(v)) = (A^{*}f)(v) = h(v)$ for all $v \in V$. But then $h \in (\ker A )^{\circ} \iff h(v) =0$ for all $v \in \ker A$, but $v \in \ker A \implies h(v) = f(A(v)) = f(0) = 0$. Hence, $\text{Im }A^{*} \subset (\ker A)^{\circ}$.
- List item