I am confused by the above answer, and also do not see where Stokes' theorem is being applied. The following is hopefully more clear.
Work on a sufficiently small disk $\Delta$ centred at $w$, and let $f$ be a holomorphic function on $\Delta$. The distributional derivative of $1/(z-w)$ with respect to $\overline{z}$ is the distribution $g$ such that \begin{eqnarray*}
\int_{\Delta} f(z) \frac{\partial}{\partial \overline{z}} \left( \frac{1}{z-w} \right) \frac{dz \wedge d\overline{z}}{-2\sqrt{-1}} &=& \int_{\Delta} g(z) \frac{1}{z-w} \frac{dz \wedge d\overline{z}}{-2\sqrt{-1}}.
\end{eqnarray*}
Note that since $f$ is holomorphic, $\dfrac{\partial f}{\partial \overline{z}} \equiv 0$, and therefore \begin{eqnarray*}
\frac{\partial}{\partial \overline{z}} \left( \frac{f(z)}{z-w} \right) &=& \frac{1}{(z-w)^2} \left( (z-w) \frac{\partial f}{\partial \overline{z}} - f(z) \frac{\partial}{\partial \overline{z}} (z-w) \right) \\
&=& - \frac{f(z)}{(z-w)^2} \frac{\partial}{\partial\overline{z}} (z-w) \\
&=& f(z) \frac{\partial}{\partial \overline{z}} \left( \frac{1}{z-w} \right).
\end{eqnarray*}
Therefore, \begin{eqnarray*}
\int_{\Delta} f(z) \frac{\partial}{\partial \overline{z}} \left( \frac{1}{z-w} \right) \frac{dz \wedge d\overline{z}}{-2\sqrt{-1}} &=& \int_{\Delta} \frac{\partial}{\partial\overline{z}} \left( \frac{f(z)}{z-w} \right) \frac{dz \wedge d\overline{z}}{-2\sqrt{-1}} \\
&=& \frac{1}{-2\sqrt{-1}} \int_{\Delta} \frac{f(z)}{z-w} dz \\
&=& -\pi f(w),
\end{eqnarray*}
by the Cauchy integral formula. Observe, however, that $f(w)$ can be expressed as the distribution $\delta(z-w)$ acting on $f$. Hence, \begin{eqnarray*}
-\pi f(w) &=& \int_{\Delta} -\pi \delta(z-w) f(z) \frac{dz \wedge d\overline{z}}{-2\sqrt{-1}}.
\end{eqnarray*}
From this, we see that $g = -\pi \delta(z-w)$, as required.
Note also, that $dz \wedge d\overline{z} = -2\sqrt{-1} dx \wedge dy$, hence the reason for the $-2\sqrt{-1}$ term hanging around.